Custom Search


Thursday 01 January 2004

Long-acting beta2-adrenergic formoterol and salmeterol induce the apoptosis of B-chronic lymphocytic leukaemia cells.

By: Mamani-Matsuda M, Moynet D, Molimard M, Ferry-Dumazet H, Marit G, Reiffers J, Mossalayi MD.

Br J Haematol 2004 Jan;124(2):141-50

B-cell chronic lymphocytic leukaemia (B-CLL) is a neoplastic disorder characterized by defective apoptosis, cell accumulation in G0/G1, and high expression of BCL2 oncogene. Intracellular cyclic adenosine monophosphate (cAMP) accumulation increases the chemosensitivity of B-CLL cells in vitro and in vivo. In the present study, we investigated the effects of beta2-adrenergic compounds, well known cAMP-inducing drugs, on the in vitro survival of leukaemia cells. In contrast to the short-acting beta2-mimetic (beta2Mim) salbutamol, a consistent pro-apoptotic effect was observed with the long-acting beta2Mim salmeterol and formoterol. Normal B cells isolated from control donors were totally resistant to the above molecules. These compounds also increased chlorambucil- and fludarabine-induced death of B-CLL cells. Blockade of beta-adrenergic receptor signalling or cAMP did not alter B-CLL apoptosis with beta2 Mimagents. Leukaemia cell apoptosis by beta2Mim correlated with an increase in calcium influx, decreased bcl-2 protein and mRNA levels, increase in BAX gene expression and a marked rise in BCL2/BAX mRNA ratios. Interleukin-4, a cytokine that increases bcl-2 expression in B-CLL cells, rescued leukaemia cell from apoptosis with beta2Mim. These data show that long-acting beta2-adrenergic agents promote apoptotic leukaemia cell death through an adrenoreceptor- and cAMP-independent, Ca2+-dependent mechanism.

Use of this site is subject to the following terms of use