Custom Search


Thursday 01 December 2005

Mononuclear cell membranes: stabilization by reproterol and cromoglycate, destabilization by fenoterol and salbutamol.

By: Zimmer G, Bernhorster M, Pilz P, Schuchmann-Fix J, Huggelmeier R, Blum N, Libertus H.

Arzneimittelforschung 2006;56(2):76-83

Electron paramagnetic resonance (EPR) spectroscopy with spin labels 5- and 16-doxyl-stearic acid (DSA) was used to differentiate between actions of beta-agonists on human mononuclear cell membrane. Reproterol (CAS 13055-82-8), salbutamol (CAS 51022-70-9) and fenoterol (CAS 1944-12-3) compared to cromoglycate (CAS 15826-37-6) were used at concentrations of 10-100 nmol/l per 10(7) cells. With reproterol, order and polarity was not much changed, whereas salbutamol and fenoterol significantly destabilized the membrane to similar extent. Cromoglycate acted in a stabilizing fashion. With trypan blue exclusion, reproterol and cromoglycate showed stable values, whereas salbutamol and fenoterol augmented permeability. Thus, by conventional lipid spin labeling the discrimination between salbutamol and fenoterol could not be carried out. In contrast, previous lipid peroxidation studies in a model system had revealed a decrease by reproterol, no change by salbutamol and an increase by fenoterol. Also, using fenoterol, protein spin label 4-maleimido-TEMPO (2, 2, 6, 6-tetramethyl-1-piperidinyloxy) showed an increase of membrane rigidity of mononuclear cells. Moreover, mast cells of different origin were previously found tween beta-agonists. Reproterol in all tests behaved in a therapeutically profitable way. In conclusion, in addition to lipid spin labeling other methods and materials should be considered, to finally arrive at a more realistic differentiation between, for instance, salbutamol and fenoterol. The term "membrane (de) stabilization" should not generally be used without careful consideration of the type of cell/membrane in question.

Use of this site is subject to the following terms of use