Custom Search

News

Thursday 01 June 2006

Continuous nebulized albuterol attenuates acute lung injury in an ovine model of combined burn and smoke inhalation.

By: Palmieri TL, Enkhbaatar P, Bayliss R, Traber LD, Cox RA, Hawkins HK, Herndon DN, Greenhalgh DG, Traber DL.

Crit Care Med 2006 Jun;34(6):1719-24

OBJECTIVE: Albuterol, due to its bronchodilatory and anti-inflammatory effects, is given via continuous nebulization in children with severe asthma. Combined burn and smoke inhalation injury frequently results in acute lung injury due to a combination of airway obstruction and inflammation. We hypothesized that albuterol administered via continuous nebulization would mitigate acute lung injury after smoke inhalation injury and burn. DESIGN: Randomized prospective animal model. SUBJECTS: Twenty adult female sheep (mean weight, 33.1+/-0.9 kg). INTERVENTIONS: Adult ewes were subjected to a 40% body surface area third-degree flame burn and smoke inhalation injury after tracheostomy. Sheep were allocated to a) sham group, b) saline continuous nebulization group, c) 20 mg of albuterol continuous nebulization group, or d) 40 mg of albuterol continuous nebulization group (n=5 animals per group). All groups received intravenous lactated Ringer's solution at 4 mL.kg-1.%burn(-1).24 hrs-1 for resuscitation and were equally mechanically ventilated throughout the 48-hr study period. Pulmonary and cardiac function, lung lymph flow, bronchial obstruction score, and wet/dry lung weights were recorded. RESULTS: Compared with saline and control groups, the albuterol groups had lower pause and peak inspiratory pressures, decreased pulmonary transvascular fluid flux, a significantly higher Pao2/Fio2 ratio, and decreased shunt fraction at 48 hrs postinjury. The wet-to-dry lung weight ratio and bronchial obstruction scores were lower for sheep receiving albuterol. CONCLUSIONS: Continuous nebulization of albuterol improves pulmonary function via improved airway clearance and decreased fluid flux in a combined burn/smoke inhalation injury model.

Use of this site is subject to the following terms of use