Custom Search

News

Thursday 01 March 2001

Albuterol delivery in a neonatal ventilated lung model: Nebulization versus chlorofluorocarbon- and hydrofluoroalkane-pressurized metered dose inhalers.

By: Lugo RA, Kenney JK, Keenan J, Salyer JW, Ballard J, Ward RM.

Pediatr Pulmonol 2001 Mar;31(3):247-54

The aim of this study was to compare albuterol delivery in a neonatal ventilated lung model, using three delivery methods: 1) jet nebulizer; 2) chlorofluorocarbon-pressurized metered dose inhaler (CFC-MDI) actuated into an ACE(R) spacer; and 3) hydrofluoroalkane-pressurized MDI (HFA-MDI) actuated into an ACE(R) spacer. The bench model consisted of a mechanically ventilated infant test lung with ventilator settings to simulate a very low birth weight neonate with moderate lung disease. Albuterol solution (0.5%) was nebulized at the humidifier and temperature port, 125 cm and 30 cm from the Y-piece, respectively. Albuterol metered dose inhalers (MDIs) were actuated into an ACE(R) spacer that was tested in two positions: 1) inline between the endotracheal (ET) tube and the Y-piece; and 2) attached to the ET tube and administered by manual ventilation. Albuterol was collected on a filter at the distal end of the ET tube and was quantitatively analyzed by high performance liquid chromatography. Albuterol delivery by CFC-MDI (position 1, 4.8 +/- 1.0%, vs. position 2, 3.8 +/- 1.6%, P > 0.05) and HFA-MDI (position 1, 5.7 +/- 1.6%, vs. position 2, 5.5 +/- 2.4%, P > 0.05) were significantly greater than delivery by nebulization at 30 cm (0.16 +/- 0.07%) and 125 cm (0.15 +/- 0.03%) from the Y-piece (P < 0.001). A single actuation of albuterol MDI delivered the equivalent of nebulizing 2.5-3.7 mg of albuterol solution. We conclude that albuterol administered by MDI and ACE(R) spacer resulted in more efficient delivery than by nebulization in this mechanically ventilated neonatal lung model. There was no significant difference in drug delivery between CFC-MDI and HFA-MDI; nor did the placement of the spacer significantly affect drug delivery. Copyright 2001 Wiley-Liss, Inc.

Use of this site is subject to the following terms of use